More
More
文章目录
  1. 结构
  2. heapify() –> siftDown() –> siftDownComparable() –> siftDownUsingComparator()
  3. 说点什么
  4. 推荐文章:

【java源码一带一路系列】之PriorityQueue

  |  

按照下图的配方,走了一遍源码。
凑齐PriorityQueue就可以召唤神龙了。
Ler’s go go go!

clipboard.png
clipboard.png

结构

1
2
3
4
5
6
7
8
9
/**
* Priority queue represented as a balanced binary heap: the two
* children of queue[n] are queue[2*n+1] and queue[2*(n+1)]. The
* priority queue is ordered by comparator, or by the elements'
* natural ordering, if comparator is null: For each node n in the
* heap and each descendant d of n, n <= d. The element with the
* lowest value is in queue[0], assuming the queue is nonempty.
*/
transient Object[] queue; // non-private to simplify nested class access

没错这是个数组,为了更好的理解注释的含义,请看下面↓。

满二叉树:

所有的节点都有2个叶子节点,除了最后层叶子节点;

节点数n和深度d的关系 n=2^d-1;

第i层上的节点数为2^(i-1);

第n个节点的父节点:n/2,左子节点:2n,右子节点:2n+1;(参考下图)

满二叉树与完全二叉树

完全二叉树:

有且仅有最底层叶子节点不完整就是完全二叉树。(例如:把15去掉)

最小堆:

父节点小于左右子节点的完全二叉树。

转数组:

用数组来存储二叉树后(参见下图)可得,根节点A[0];左子节点a[2n+1];右子节点a[2(n+1)],父节点a[(n-1)/2]。(n为数组下标,从0开始)

二叉树转数组

是的,优先队列的存储结构大概就是这样推演而来。

heapify() –> siftDown() –> siftDownComparable() –> siftDownUsingComparator()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
/**
* Establishes the heap invariant (described above) in the entire tree,
* assuming nothing about the order of the elements prior to the call.
*/
@SuppressWarnings("unchecked")
private void heapify() {
for (int i = (size >>> 1) - 1; i >= 0; i--)
siftDown(i, (E) queue[i]);
}
/**
* Inserts item x at position k, maintaining heap invariant by
* demoting x down the tree repeatedly until it is less than or
* equal to its children or is a leaf.
*
* @param k the position to fill
* @param x the item to insert
*/
private void siftDown(int k, E x) {
if (comparator != null)
siftDownUsingComparator(k, x);
else
siftDownComparable(k, x);
}
@SuppressWarnings("unchecked")
private void siftDownComparable(int k, E x) {
Comparable<? super E> key = (Comparable<? super E>)x;
int half = size >>> 1; // loop while a non-leaf
while (k < half) {
int child = (k << 1) + 1; // assume left child is least
Object c = queue[child];
int right = child + 1;
if (right < size &&
((Comparable<? super E>) c).compareTo((E) queue[right]) > 0)
c = queue[child = right];
if (key.compareTo((E) c) <= 0)
break;
queue[k] = c;
k = child;
}
queue[k] = key;
}
@SuppressWarnings("unchecked")
private void siftDownUsingComparator(int k, E x) {
int half = size >>> 1;
while (k < half) {
int child = (k << 1) + 1; //2n + 1,这里n是下标
Object c = queue[child];
int right = child + 1;
if (right < size &&
comparator.compare((E) c, (E) queue[right]) > 0) // 找出最小子节点
c = queue[child = right];
if (comparator.compare(x, (E) c) <= 0) // 父节点小则退出循环,否则进行替换
break;
queue[k] = c;
k = child;
}
queue[k] = x;
}

这是任意数组最小堆化的过程。如果是一个合格的最小堆,那么所有的父节点都在数组前半部分,而通过父节点又能得到左右子节点。因此源码一上来就“size >>> 1”(相当于除以2),只需对前半部分进行循环处理,使得循环结束后所有父节点均大于左/右子节点。这里非根父节点会被多次比较到。heapify()后将得到上文所说的最小堆数组。

1
2
3
4
5
6
7
8
9
10
11
12
13
@SuppressWarnings("unchecked")
public E poll() {
if (size == 0)
return null;
int s = --size;
modCount++;
E result = (E) queue[0];
E x = (E) queue[s];
queue[s] = null;
if (s != 0)
siftDown(0, x); // !
return result;
}

poll()的核心也是siftDown,而这里的“siftDown(0, x);”与之前的“siftDown(i, (E) queue[i]);”不同的是,下标0所对应的元素本非x。也就是说,这里进行了个转换:把最后queue[s]替换了queue[0]进行新的最小堆数组化。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
/**
* Removes a single instance of the specified element from this queue,
* if it is present. More formally, removes an element {@code e} such
* that {@code o.equals(e)}, if this queue contains one or more such
* elements. Returns {@code true} if and only if this queue contained
* the specified element (or equivalently, if this queue changed as a
* result of the call).
*
* @param o element to be removed from this queue, if present
* @return {@code true} if this queue changed as a result of the call
*/
public boolean remove(Object o) {
int i = indexOf(o);
if (i == -1)
return false;
else {
removeAt(i);
return true;
}
}
/**
* Removes the ith element from queue.
*
* Normally this method leaves the elements at up to i-1,
* inclusive, untouched. Under these circumstances, it returns
* null. Occasionally, in order to maintain the heap invariant,
* it must swap a later element of the list with one earlier than
* i. Under these circumstances, this method returns the element
* that was previously at the end of the list and is now at some
* position before i. This fact is used by iterator.remove so as to
* avoid missing traversing elements.
*/
@SuppressWarnings("unchecked")
private E removeAt(int i) {
// assert i >= 0 && i < size;
modCount++;
int s = --size;
if (s == i) // removed last element
queue[i] = null;
else {
E moved = (E) queue[s];
queue[s] = null;
siftDown(i, moved);
if (queue[i] == moved) {
siftUp(i, moved);
if (queue[i] != moved)
return moved;
}
}
return null;
}

如你所见,remove()也用到了siftDown()(同时还有siftUp(),下面介绍)。这里 经过siftDown后,如果queue[i] == moved则表示queue[i]的左右子节点都大于moved,即保证了i节点子树是最小堆,但queue[i]的父节点是否小于moved却未知,故又进行了siftUp。(图片来自【2】)

image

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
/**
* Inserts item x at position k, maintaining heap invariant by
* promoting x up the tree until it is greater than or equal to
* its parent, or is the root.
*
* To simplify and speed up coercions and comparisons. the
* Comparable and Comparator versions are separated into different
* methods that are otherwise identical. (Similarly for siftDown.)
*
* @param k the position to fill
* @param x the item to insert
*/
private void siftUp(int k, E x) {
if (comparator != null)
siftUpUsingComparator(k, x);
else
siftUpComparable(k, x);
}
@SuppressWarnings("unchecked")
private void siftUpComparable(int k, E x) {
Comparable<? super E> key = (Comparable<? super E>) x;
while (k > 0) {
int parent = (k - 1) >>> 1;
Object e = queue[parent];
if (key.compareTo((E) e) >= 0)
break;
queue[k] = e;
k = parent;
}
queue[k] = key;
}
@SuppressWarnings("unchecked")
private void siftUpUsingComparator(int k, E x) {
while (k > 0) {
int parent = (k - 1) >>> 1;
Object e = queue[parent];
if (comparator.compare(x, (E) e) >= 0)
break;
queue[k] = e;
k = parent;
}
queue[k] = x;
}

与之相对的,还有名为siftUpComparable()/siftUpUsingComparator()的方法。在新增元素时被调用。新增元素放在下标为size的位置。这里的down与up指的是被比较对象x的去向。比较后x被赋值给子节点就是down,被赋值给父节点就是up。当然你来写的时候也可能新增时,从上到下循环遍历。

说点什么

PriorityQueue有序;不允许为null;非线程安全;(PriorityBlockingQueue线程安全);没有介绍的地方大抵与其他集合框架相似,如扩容机制等。

优先队列每次出队的元素都是优先级最高(权值最小)的元素,通过比较(Comparator或元素本身自然排序)决定优先级。

记得常来复习啊~~~

更多有意思的内容,欢迎访问笔者小站: rebey.cn

推荐文章:

【1】【深入理解Java集合框架】深入理解Java PriorityQueue;

【2】java集合——Queue;

打赏
手机扫一扫,支持CHE~